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Recall the prehistory



The prehistory

Theorem ((Infinite) Ramsey Theorem, 1930)

∀p,k≥1 : ω −→ (ω)p
k,1.

Theorem (Devlin, 1979)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

T (n) is the big Ramsey degree of n tuple in Q.

T (n) = tan(2n−1)(0).

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256

The proof (due to Laver) makes essential use of the Milliken tree theorem. This proof may
seem bit arbitrary. However trees are essential (arise naturally as rich colorings). Precise
bounds can be understood as a justification that this is the only approach.
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Story so far

1 We well-ordered Q and produced tree of types
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2 We a gave coloring of Q (by shapes of trees) so every copy of Q has “many colors”
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3 We applied Milliken tree theorem to find copy of Q with “few colors”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

4 We described colors as structures of compatible partial orders, so “few”=“many”
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Big Ramsey degrees of R

Definition

A (countable) structure A is (ultra) homogeneous if every its partial isomorphism extends
to an automorphism.

• We denote by R the Rado (or random) graph. This is the unique homogeneous and
universal countable graph. (By universal we mean that every countable graph has an
embedding to R.)

• We denote by G the class of all finite graphs.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

A finitary version is (probably more) famous!

Theorem (Nešetřil–Rödl 1977, Abramson–Harington 1978)

∀A∈G∃t=t(A)∈ω∀B∈G,k≥1∃C ∈ G : C −→ (B)A
k,t .
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Understanding the unavoidable colourings

While trying to formulate Ramsey-type theorem it is good to check if there are any
unavoidable colourings and if so understand their structure.
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For (Q,≤) we have the Sierpiński colourings. Can we do something similar for the Rado
graph?
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Passing number graph
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Definition (Graph G)

We will consider graph G:
1 Vertices: 2<ω

2 Vertices a,b ∈ 2<ω satisfying |a| < |b| forms and edge if and only if b(|a|) = 1.
3 There are no other edges.
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The upper bound

Lemma

G is universal: the Rado graph R embeds to G.

Proof.

Assume that the vertex set of R is ω. The vertex i ∈ ω then corresponds to a sequence a
of length i with a(j) = 1 if and only if i ∼ j .

Lemma

The definition of G is stable for passing into a strong subtrees: if S is a strong subtree of
2<ω then it is also a copy of G in G

We thus can repeat precisely the same proof as before to obtain the upper bound on big
Ramsey degrees.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

Lower bounds needs a bit more care.
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Lower bound

A

A

B

“There are three ways of understanding the proof of the following Theorem 4.1.
The first is to study the definition of strong diagonalization carefully and then to
see that there is certainly enough room in a wide omega tree T to accommodate
a strong diagonalization of T into T . The second one is to read the proof of
Theorem 4.1 to the end of the construction of the function f and then to see that
there is certainly enough room in a wide omega tree T to proceed with an induction
argument. The third one is to read through the gory details.”

N. Sauer: Coloring subgraphs of the Rado graph, Combinatorica 26 (2) (2006), 231–256.
(Page 13/23).
The real optimality appears later in:
Laflamme, Sauer, and Vuksanovic. Canonical partitions of universal structures.
Combinatorica 26 (2) (2006): 183-206.
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Big Ramsey degrees of the Rado graph

1 Enumerate R and produce tree of types

x0

x1

x2
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x4

x6

x5
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v1

v2

2 Give a coloring of R (by shapes of trees) so every copy of R has “many colors”
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3 Apply Milliken tree theorem to find copy of R with “few colors”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0 1

00 01 10 11

000 001 010 011 100 101 110 111

4 Describe minimal set of colors as structures, so “few”=“many”
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Barbara Clatworthy (1921-2011)
Fred Payne Clatwothy (1875-1953) Autochrome, 7 x 5 inches, c1928

Mark Jacobs Collection



Some more recent results on big Ramsey degrees

1 Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous
ultrametric spaces

2 Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees
of homogeneous dense local order.

3 Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free
graphs are finite

4 Dobrinen (2019+): Big Ramsey degrees of universal homogeneous Kk -free graphs
are finite for every k ≥ 3.

5 Zucker (2020+): Big Ramsey degrees of Fraïssé limits of free amalgamation classes
in binary language with finitely many forbidden substructures are finite.

6 Balko, Chodounský, H., Konečný, Vena (2020+): Big Ramsey degrees of 3-uniform
hypergraphs are finite.

7 J.H. (2020+): Big Ramsey degrees of partial orders and metric spaces are finite.
8 Balko, Chodounský, Dobrinen, J.H., Konečný, Nešetřil, Vena, Zucker (2021+): Big

Ramsey degrees of structures described by induced cycles are finite.
9 Balko, Chodounský, Dobrinen, J.H., Konečný, Vena, Zucker (2021+):

Characterisation of big Ramsey degrees of Fraïssé limits of free amalgamation
classes in binary language with finitely many
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Big Ramsey degrees of restricted structures

Let G3 be the class of all finite griangle-free grpahs.

Theorem (Dobrinen 2020)

Every (countable) universal triangle-free graph R3 has finite big Ramsey degrees:

∀A∈G3∃T=T (|A|)∈ω∀k≥1 : R3 −→ (R3)
(A)
k,T .

Let P be the class of all finite partial orders.

Theorem (J. H. 2020+)

Every (countable) universal partial order (P,≤) has finite big Ramsey degrees:

∀(O,≤)∈P∃T=T (|O|)∈ω∀k≥1 : (P,≤) −→ (P,≤)
(O,≤)
k,T .

Universality: every countable partial order has embedding to (P,≤).
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Parameter words

Definition (Parameter word)

Given a finite alphabet Σ and k ∈ ω + 1, a k -parameter word is a (possibly infinite) word W
in alphabet Σ ∪ {λi : 0 ≤ i < k} such that ∀i ∈ k word W contains λi and for every
j ∈ k − 1, the first occurrence of λj+1 appears after the first occurrence of λj .

Example (2-parameter word)

Σ = {L,X,R}.
LRLλ0λ0Xλ1λ0R

Definition (Substitution)

LRLλ0λ0Xλ1λ0R(LR) = LRLLLXRLR
LRLλ0λ0Xλ1λ0R(X) = LRLXXX

For set S of parameter words and a parameter word W :

W (S) = {W (U) : U ∈ S}.
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Ramsey theorem for parameter words

The following infinitary version of Graham–Rothschild Theorem is a direct consequence of
the Carlson–Simpson theorem. It was also independently proved by Voight in 1983
(apparently unpublished):

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter
words in alphabet Σ is coloured by finitely many colours, then there exists a
monochromatic infinite-parameter word W.

By W being monochromatic we mean that for every pair of k -parameter words U,V the
colour of W (U) is the same as colour of W (V ).
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Parameter words as subtrees

0 1
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Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope:

0 λ0 1 λ1 λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0

λ0 1 λ1 λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0

1 λ1 λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1

λ1 λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1

λ0 λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0

λ2



Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0 λ2



Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.

• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff
1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is universal triangle-free graph.
Key observation 2: For every pair of 1-parmeter words U and V and every ω-parameter W

U ∼ V ⇐⇒ W (U) ∼W (V ).
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Observation

G is a universal triangle-free graph.

Observation

For every infinite-parameter word W it holds that u ∼ v ⇐⇒ W (u) ∼ W (v).
(Substitution is also graph embedding on G→ G.)

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter words in
alphabet Σ is coloured by finitely many colours, then there exists a monochromatic
infinite-parameter word W.

Proposition (Envelopes are bounded)

There exists T (|Σ|, s, k) such that for every set S of size s of k -parameter words in alphabet Σ there
exists an envelope of S with at most T (|Σ|, s, k) parameters.

Theorem (Dobrinen 2020)

The big Ramsey degrees of universal triangle-free graph are finite.

Proof.

Fix graph A and a finite coloring of
(G

A

)
. Because envelopes of copies of A are bounded, apply the

theorem above for every embedding type and obtain a copy of G with bounded number of colors.





Partial order on infinite ternary tree

x0

L RX

Put Σ = {L,X,R} and order L <lex X <lex R.

Definition (Partial order (Σ∗,�))

For w ,w ′ ∈ Σ∗ we put w ≺ w ′ if and only if there exists 0 ≤ i < min(|w |, |w ′|) such that
1 (wi ,w ′i ) = (L,R) and
2 for every 0 ≤ j < i it holds that wj ≤lex w ′j .

Key observations: � is universal partial order and is stable for substitution.
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More general result

Theorem (Balko, Chodounský, Hubička, Konečný, Nešetřil, Vena 2021)

Let L be a finite language consisting of unary and binary symbols, and let K be a
countably-infinite irreducible structure. Assume that every countable structure A has a
completion to K provided that every induced cycle in A (seen as a substructure) has a
completion to K and every irreducible substructure of A of size at most 2 embeds into K.
Then K has finite big Ramsey degrees.

A homomorphism f : A→ B is a mapping f : A→ B such that for every R ∈ LR of arity r
we have: (x1, x2, . . . , xr ) ∈ RA =⇒ (f (x1), f (x2), . . . , f (xr )) ∈ RB.
A homomorphism f : A→ B is a homomorphism-embedding if f restricted to any
irreducible substructure of A is an embedding. The homomorphism-embedding f is called
a (strong) completion of A to B provided that B is irreducible and f is injective.

Corollary

The following structures have finite big Ramsey degrees:
1 Free amalgamation structures described by forbidden triangles,
2 S-Urysohn space for finite distance sets S for which S-Urysohn space exists,
3 λ-ultrametric spaces for a finite distributive lattice λ,
4 Metric spaces associated to metrically homogeneous graphs of a finite diameter.
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